The hibLib engines - draft

(© Copyright 2006, Nicolas Lalevée.
All rights reserved.

February 19, 2006

Contents

1 Formatted text drawing engine) 4
I1.1 The main processus| e e 4
....................................... 4

1.1.2 2nd pass|. 5

D = S 5

[1.2.1 Thecharactersl e 5

[1.2.2 'The positions of the texts| 6

1.2.3 edrawing modes| L L 6

1.2. ustified paragraph|. 7

[1.2.5 Word Warp| o 7

[1.2.6 The objects|« . o o e 8

L3 The HTXT formatl o o 8
[1.3.1 The HTXT/HT89/HT92 file implementations| 8

[[.3.27 Defined position in the text] o o o v it 8
[2__Scrolling engine| 9
I _Thescrolll . -« o v v oo 9
[B_The screen 10
4 Font engine| 12
.. 12

4.2 Drawing afont| e 13
A3 Toadafontl 13
4.4 Load every font| 13

|5 Menu engine| 14
D1 Initialisationl e e 14
[5.2 Define the enabled keys| o oo oo 15
B3 _The "move” model 16
BA_Theleveld . . . o oo o e e e e 16
p.5 The custum drawing function| Lo oL Lo 18

|6 Configuration|

Introduction

About this document
This document will describe the APT of the hibLib library.

10

15

Chapter 1

Formatted text drawing engine

1.1 The main processus

The HibLib main engine works in sequence of two distinguish process. The first work can be called
the parsing, and the second the formatting of the text to show. When you open a TEXT file with
HibView, you can see the two pass. The fisrt pass is desingned to read the text and to create
objects independantly of the calculator. Then the formatting organize every object in ”screen lines”,
depending of the calculator.

1.1.1 1st pass

In fact the first pass reads the initial text and tries to interpret every format and defined object
as #U, #2, &E, etc... This first pass creates a table of "Object”. This table is stored in the h_File
structure (h_objs, hobjs and nb_objs). Here is the definition of an ”Object”:

/* The different objects */

typedef enum {
HOBJECT_TIOS_LINE
HOBJECT_TEXT =
HOBJECT_PIC =
HOBJECT_PPRINT =
HOBJECT_LINK =
HOBJECT_SEPARATI1 =
HOBJECT_SEPARAT2 =
HOBJECT_END_TEXT

} h_ObjectType;

1]
© 00N PN O

/* The description of an Object */
typedef struct {
h_ObjectType type;

union {
h_Format frt; //for the text
h_FrtLine frtline; //for the begining of tios line
struct {

20

25

o

char wrong:1,
comp:1;
HANDLE handle; //for pic or pprint kept in mem
} pic;
} datas;
unsigned short pos_txt;
} h_Object;

Each object has a position and a type, some can have some data. So, every picture, link or pretty-
print expression is an object. For the text, the definition of an object is a sequence of characters
with no change of format. For instance, this is a unique h_Object: "this, is_ a text", but there are
three h_Objects here: "this #Uis#U,a text" ("this," and "is" and ",a text"). The consequence is
that each h_Object which is a HOBJECT_TEXT has is own format.

Other special h_0bject have been introduced: the Ti-OS line (HOBJECT_TIOS_LINE) and the end
of text (HOBJECT_END_TEXT). Note that theses lines are Ti-OS lines, and not graphical lines, so it
is independant of the screen size of the calculator. Note that the HOBJECT_TIOS_LINE specify the
beginning of a line, not a end of line. So, a bookmark beeing defined for each Ti-OS line, each
bookmark will be associated with this type of h_0Object.

1.1.2 2nd pass

The text being parsed, and every formats being read, the last thing to do is to organize the text.
This pass is quite simple: it tries to put every h_0Object in ”screen lines”. So this pass creates a new
table of h_Scrlines, stored in the hTxt structure too.

typedef struct {
unsigned short pos_txt;
unsigned char nb_space;
unsigned char width;
unsigned char exp_max;
unsigned char height;

} h_Scrline;

Each screen line is defined by a position in the text. To draw more quickly, some graphical
information are kept in the structure: width, nb_space...

Note that a h_ScrLine can start in a middle of an h_0Object. The only example is if the h_Object
is a HOBJECT_TEXT. For very long text without format changing, the pos_txt of a h_ScrLine can point
in the middle of the h_0Object.

1.2 Drawing

1.2.1 The characters

This engine draw the characters with the font engine (see section [4.2)). So every character have to
be by default separated by one pixel. The space between two words is defined by the size of the
character which has the ASCII code 20 ; in fact the real size between two words is size(’ ?)+1.

1.2.2 The positions of the texts

The main rule of drawing is that there is a main line of drawing and every element of the line is
calculated relatively of the line. On this main line is diplayed the normal text. For every exposant,
the line of drawing is at the half of the text size upon the main line of drawing. For the suffix, it is
the same but under the main line of drawing.

Figure 1.1: The position of the graphic elements

Note that even if the size of font changes between the normal text and the exposant one (or
the suffix one), the reference size to calculate the exposant line of drawing is the size of the last
normal text. For exemple, the exposant line is at the half size of "text” in the middle font for
"#2text#E#1exp#E", "#2text#1#Eexp#E" Or "#2text#3#Dsuf#D#1#Eexp#E".

1.2.3 The drawing modes

This library support different mode of drawing, here are their specifications.

Normal

Underline (dotted or not)

Vector

Conjug

Inversed

Italic

Bold

Conclusion about sizes

The width of the printed character is font.width[charact]
e +1 if there is un character before
e +1 if it is a vector and the folowing character is not a vector:

e +1 if it is bold

e +1 if it is shadow

e +(font.height/3) if is italic and if the preceding one is not italique, or there is no preceding
character

The height upon the line of text is font.height
e +yoffset+1 if it is an exposant

e -yoffset if it is a suffix

e +4 if it is a vector

e +2if it is a conjug

The height under the line of text is 0

e -yoffset-1 if it is an exposant

e +yoffset if it is a suffix

e +2 if it is underlined

1.2.4 Justified paragraph

For a justified paragraph, the size of the space will be variable depending of the line and depending
of the used font. The algorithm is the folowing one :

1. compute the total size of every space in the line as it is a normal paragraph (not justified):
size_space

2. compute the size between the last character and the end of the line : end_size

3. compute the factor of enlargement : factor = end_size/size_space

4. every space between two words will be augmented by this previous factor : new_space_size =
old_spacegize x factor

1.2.5 Word Warp

The Word Warp mode desable the possibility to finish a line in the middle of a word. The rule of
”cutting” are the folowing ones :

e "cutting” is allowed just after the "space” character

” N

e “cutting” is allowed just after the character
e "cutting” is allowed just before or just after a link object

e adding a ”space” charater on a line is always allowed

1.2.6 The objects
The pictures
The pretty-print expressions

The link

1.3 The HTXT format

The idea of the HTXT format is to make faster the load of a text. This will be a format of a Ti-OS
variable which will be saved as any other TEXT file, but not editable. In fact, it will be an ”image”
of every object generated during the pass. So, in this format, there will be the table of h_Object, the
table of h_Bookmark, etc... and the initial text with every character of format (#1, #U, &E,...) removed
(they become useless).

The problem is that the second pass is calculator dependant. So the HTXT format will be
generated by the first pass, and it will need the second pass to really draw the formatted text.

By the way, we can imagine two more formats, which be the HT89 and the HT92 format, which
will be calculator dependant (in fact size-screen dependant). To continue in this idea, a large screen
calculator (Ti92+ or V200) will be able to read a HT89 file, and a small screen calculator (Ti89)
will read the HT92 with the possibility to scroll horizontally.

Yet, theses functionnalities are partially implemented, and the folowing specifications can change.

1.3.1 The HTXT/HT89/HT92 file implementations
The format of the file is not determined yet.

1.3.2 Defined position in the text

Chapter 2

Scrolling engine

2.1 The scroll

The scrolling engine is based on one buffer that represent the real text to draw. If the wanted text
size is 30 pixels width, then the buffer size will be 30 pixels width. And if the wanted text size is
3000 pixels width, then the buffer size will be 3000 pixels width. The height of this buffer is by
defaut equal to LCD_HEIGHT + 2 x heightest_line.

Having this buffer, the first time, the buffer will be filled entirely with the lines to draw. To see
it on the screen, a copy of the seeable part of the buffer is copied to the LCD memory. Here we have
a screen filled with the first seeable lines.

When the user will want to see the other parts of the text, there will be the scrolling mechanism.
Here, two cases are possible : the pixel line we want to see is already in the buffer or not.

If the pixel line is already in the buffer, then the scrolling engine will scroll the screen (not the
buffer !) in the proper direction, and will copy the missing pixel line from the buffer to the screen.
At this point, the screen is scrolled.

If the wanted line is missing in the buffer, then the buffer need to be scrolled too. As the screen
is scrolled pixel by pixel, the buffer is scrolled by entire text lines. After the buffer is scrolled in the
proper way, the lines we wanted is now here, so we can return to the previous case.

For the page scrolling, the mecanism is nearly the same. The difference is that we request to
the scrolling engine to scroll of more than on pixel : in fact, the page is scrolled of screen_height —
common_band pixels (common_band is the height in pixel we want to be common between two
following pages).

This scrolling mecanism is done for the foor directions (top, bottom, left and right) is the same
way.

The special scrolling functions which go to the last page or to the first is done by the hl_goTo
function (this function goes to the specified line).

Chapter 3

The screen

Due to the special scrolling engine, every graphic function have to know the width of the screen
buffer in byte unit. So, every graphic function has in parameter a structure that defines the screen
memory :

typedef struct {
char * ptr;
short byte_width;
} h_ScreenMem;

For exemple, the classical LCD screen is defined by :
#define LCD_SCREEN (h_ScreenMem){.ptr=LCD_MEM,.byte_width=30}
The screen size is defined as a structure too :

typedef struct {
short width;
short height;

} h_ScreenSize;

Note that the width can be not equal to 8 * byte_width. This is the case for the LCD buffer for
the Ti 89.
And the position of the screen :

typedef struct {
short x;
short y;

} h_ScreenPos;

The position is used to defined a frame in the buffer of the screen. For exemple, if you want to
define a new screen in the LCD screen with a border of 10 pixels : its x position will equal to 10, y
to 10, its width to LCD_WIDTH — 20 and its height to LCD_HEIGHT — 20 (its memory is still
LCD_SCREEN).

And then the global definition of the screen

typedef struct {
h_ScreenMem mem;

10

5

10

h_ScreenSize size;
h_ScreenPos pos;
} h_Screen;

With the previous example, it will be :

h_Screen internal_frame = {
.mem = LCD_SCREEN,
.size = {

.width = LCD_WIDTH - 20,
.height = LCD_HEIGHT - 20
}’

.pos = {
.x = 10,
.y = 10

11

Chapter 4

Font engine

In the HibLib library, a font engine is provided. This engine is dedicated to manipulate different
font on the Ti. At the basis, the Ti as three sorts of font: the little, the medium and the large. Now,
with this engine, you will be able to make your own font. Then you will be able to load the font
of your choice and draw a string with this font. Some special format are included in the drawing
routines, as bold and italic format.

Another feature of this engine is that it draws string faster than Ti-OS routines does. So, even
if you don’t use special font, you can use the HibLib routines to draw string fast.

4.1 The datas

The datas of the font are stored in variables of the Ti, with the extension "FONT”. One of this
variable will describe only one size of font. In consequence, if you want to describe the three Ti-OS
fonts, three variables will be necessary.

The format of the variable is quite simple:

e 2B: the size of the variable (as for every variables)
e 2B: the version of description of the font variable format

e 1B: the maximum width of a character

1B: the maximum height of a character

the table of width of character: table of 256 elements of 1B

e the table of picture of character: table of 256 elements of (height * (width/8)) Bytes

a string which describe the font (for example "TI-0S Font 1")

a string of the name of the author (for example "Me")

e the FONT tag: "FONT\O\xF8"

12

4.2 Drawing a font

The sprite of a character will describe the entire character and not the defined space detween two
characters. For exemple, the little Ti-OS font have one pixel free between two characters. In the
Ti-O8S, theses sprites are stored with the space : the character ’e’ has a width of 4 pixels for the
Ti-OS. In fact, there is 3 pixels for the ’e¢’ and 1 pixel for the space between the ’e’ and the next
charater. In the HibDLL, the width of the ’e’ charater will be 3 pixels. The routine which draw
strings will automatically add 1 pixel between each character.

For the space between two lines of strings, this is the same idea. For the Ti-OS, the little font
have a height of 6 pixels. HibDLL will consider the little font having a height of 5 pixels.

This difference has been implemented to have more precision in drawing. For exemple, drawing
justified paragraph will be more clean : the last caharter of a line won’t finish with a free pixel.

4.3 Load a font

Before using a font, you have to load the font. In fact, it simply search the FONT variable, gets its
handle, locks it, and fills the h_Font structure.

typedef struct {
HANDLE h;
unsigned char filename [18];
unsigned char * name;
unsigned char x;
unsigned char y;
unsigned char * xTable;
unsigned char * spriteTable;
} h_Font;

So, because it locks the handle, you have to unload a font before leaving your software: use the
macro h_unloadFont (font) to do it.

4.4 Load every font

Another way to load font is to use the h_loadAl1Font function. It search in the Ti every FONT
variable and store the h_Font structures in a table. Then when you want a specific font, you just
have to use h_findFont which return the index of the table of the font you want.

The table is described by the folowing structure:

typedef struct {
h_Font * tab;
short nb;

} h_FontTab;

By this way too, you have to unload every FONT by using the macro h_unloadAllFont (fonttab).

13

10

15

20

Chapter 5

Menu engine

The Menu engine is an engine which provides an easy control of scrolling menus and trees. This
engine is for example used for the bookmark menu. The configuration of the engine consist only in
specifying the entries of the menu (and eventually their level for trees), the size of your menu and
the behaviour relatively to the pressed keys. Then the engine will automatically draw the menu and
wait for a choice of the user. Finnaly, you just have to handle with the choice of the user and not
his "moving” in the menu.

5.1 Initialisation

To specify the behaviour of the menu, you have to fill the h_Menu structure:

typedef struct st_h_Menu h_Menu;

struct st_h_Menu {
//the datas
short nb;
short size_item;
char * tab;
h_MenulLevel * level_tab;
//the behaviour
unsigned short key_able;
//drawing config
h_Font * font;
unsigned char pos_x;
unsigned char pos_y;
unsigned char width;
unsigned char nb_draw;
h_fctDrawMenu fct_draw;
//states variables
short no_choice;
unsigned char top;
char move;

};

14

10

Desciption of the h_Menu structure:
nb the number of entries

size_item the size of one item: for example, if you have a table of pointer on strings, you should
enter sizeof(char *)

tab the table of item: by default, it’s a table of pointer of string, but we will be able to force the
cast (see

level_tab the table of the levels of the entries

key_able the keys that should be accepted while browsing the menu (see

font the font which will be used for drawing the entries

pos_x and pos_y defines the top left position of the menu

width defines the width of the menu

nb_draw defines the number of entry to draw on the screen

fct_draw defines the drawing function used to draw the entries

no_choice it is the current choice of the user

top it is the number of the entru drawn on the top of the menu

move it can have the values 0 (false) or 1 (true): it describes if it is in a "move mode” or not (enabled
with the HMENU_ENABLE_MOVE see [5.3))

5.2 Define the enabled keys

You can choose the keys you want to handle, and the key you don’t want to use. Here is the definition
of the keys which are supported:

/* code to enable the key for the menu x*/
#define HMENU_ENABLE_RIGHT 0x0001

#define HMENU_ENABLE_LEFT 0x0002
#define HMENU_ENABLE_Fx 0x007C //every Fx key
#define HMENU_ENABLE_F1 0x0004
#define HMENU_ENABLE_F2 0x0008
#define HMENU_ENABLE_F3 0x0010
#define HMENU_ENABLE_F4 0x0020
#define HMENU_ENABLE_F5 0x0040
#define HMENU_ENABLE_DEL 0x0080
#define HMENU_ENABLE_MOVE 0x0100
#define HMENU_ENABLE_MODE 0x0200

So if you just want to use the F1 and F4 key, you should write:

15

hMenu mymenu = { .nb=...
.key_able=HMENU_ENABLE_F1 & HMENU_ENABLE_F4,

};

5.3 The "move” mode

The engine allows you to enter in a ”move” mode. This mode allows the user to move entries in the
menu. For exemple, you can imagine a ”Favoris” menu, and the user wants to reorder the menu at
his wantings. So there is a special mode, enabled by the APPS key. The user enter in this mode by
pressing the key APPS on the entry he wants to move. Then, every movement (up and down) will
move the entry in the menu. He can cancel his moving by pressing ESC, and he can validate his
moving by pressing the APPS key again.

To allow a such mode in your menu, you have to specify that the move mode is enabled by adding
the HMENU_ENABLE_MOVE to the key_able.

5.4 The levels

The menu engine can works with levels. The level of each item is decribed by this folowing structure:

typedef struct {
char level:6,
hide:1,
draw:1;
} h_MenulLevel;

As the definition of the structure shows, level starts from 0 (the root level) to 26-1=63 (the most
little leaf). Another field hide describes if the item should be hide or not and the last field draw is
internally used to know if an entry should be drawn or not.

If we want to do:

+1_1
+ 1_11
+ 1_12
+ 1_121
+ 1_13
+ 1.2
+ 1.3
+ 1_31
+ 1_32

So the structure should be:

h_MenuLevel level_tab[} = {{.level=0, //1_1
.hide=0,
.draw=1},

{.level=1, //1_11

16

.hide=0,
.draw=1},
{.level=1, //1_12
.hide=0,
.draw=1},
{.level=2, //1_121
.hide=0,
.draw=1},
{.level=1, //1_13
.hide=0,
.draw=1},
{.level=0, //1_2
.hide=0,
.draw=1},
{.level=0, //1_3
.hide=0,
.draw=1},
{.level=1, //1_31
.hide=0,
.draw=1},
{.level=1, //1_32
.hide=0,
.draw=1}
};

Then if you want to hide every subnode of 1_1:

h_MenuLevel level_tab[] = {{.level=0, //1_1
.hide=0,
.draw=1},
{.level=1, //1_11
.hide=1,
.draw=0},
{.level=1, //1_12
.hide=1,
.draw=0},
{.level=2, //1_121
.hide=1,
.draw=0},
{.level=1, //1_13
.hide=1,
.draw=0},
{.level=0, //1_2
.hide=0,
.draw=0},
{.level=0, //1_3
.hide=0,
.draw=0},
{.level=1, //1_31
.hide=0,
.draw=0},

17

25

10

{.level=1, //1_32
.hide=0,
.draw=0}

};

The engine will only draw:

5.5 The custum drawing function

For special application, the entries of the menu can be other object than strings. The engine can
only draw item that are strings, so yo should provide a function to draw the item. A such function
should have the folowing type:

typedef void (*h_fctDrawMenu) (short i, short x, short y, h_Menu * hmenu,
h_ScreenMem screen);

The parameters of the function are:
i: is the number of the item
x and y: this is the position of the entry in the screen
h_menu: it is the h_Menu structure which is used for the menu (so you can have access to the tab)
screen: this is the screen where the item would be drawn

An exemple of this type of use is the "home” menu of HibView. This menu show the variables
of the Ti as a tree. In fact, the tab used for this menu is a table of HSym. Then, to draw correctly
the name of the variable, and further more some additionnal informations of the selected object, the
folowing drawing function is passed to the menu engine.

void h_drawVAT (short i, short x, short y, h_Menu * hmenu,
h_ScreenMem screen) {
HSym * tabhsym=(HSym *) (hmenu->tab);
unsigned char name [20];
unsigned char buff [20];
const unsigned char * ext =NULL;
char * data = NULL;
short type;
SYM_ENTRY * SymPtr = DerefSym(tabhsym[i]);
SymCpyO (name , SymPtr ->name) ;

if (SymPtr->flags.bits.folder) {

ext="Folder";
strcpy (buff ,name) ;

18

15

20

30

} else {
data = HeapDeref (SymPtr->handle);
type = h_getFileType (data);
switch (type) {
case UNKNOWN_FILE:
ext="777";
break;
case TEXT_FILE:
ext="txt";
break;
case HTXT_FILE:
ext="htxt";
break;
case PIC_FILE:
ext="pic";
break;
case STR_FILE:
ext="str";
break;
}
sprintf (buff,"Ys.%s" ,name,ext);

}
hl_drawStr (hmenu->font ,x,y,buff ,FALSE ,FALSE,screen);

if (hmenu->no_choice==i) {
hl_fillFrame (LCD_WIDTH/2+5,15,LCD_WIDTH-5,LCD_HEIGHT-25,
HGRAPHMODE_WHITE, screen);
if (' (SymPtr->flags.bits.folder)) {
sprintf (buff,"%uyo." ,*(unsigned short x)data);
hl_drawStr (hmenu->font ,LCD_WIDTH/2+15,35,buff ,FALSE,FALSE, screen);
}
hl_drawStr (hmenu->font ,LCD_WIDTH/2+15,25,ext ,FALSE,FALSE, screen) ;

19

Chapter 6

Configuration

The HibLib library needs some configuration information before begining the parsing of a text.

6.1 The structure

The function which needs some configuration information have in parameter h_Config hcfg. The
structure to pass in parameter is the folowing one :

typedef struct {
h_Lang lang;
h_Font * font_msg;
unsigned short speed_scroll;
unsigned short speed_key;
} h_Config;

Then, for every function which needs some configuation information, you will pass in parameter
the pointer of this structure. The structure would be filled before using a function of HibLib. In
most cases, you don’t need to change its values during using HibLib.

lang: defines the texts which will be used in informative messages (see the folowing section
about the internationalisation)

font_msg: defines the font which will be used for every message (see section 4| about font)
speed_scroll: defines the speed of the scrolling: this feature not enabled yet

speed_key: defines the speed between two keys pressed (a good choice is about 30)

6.2 Internationnalization

This library needs some text for some informative messages. To be independant of the language,
every text have been externalized, and aren’t included in the library. So, to use this library, you
have to provide the definition of every text. The definition of the texts are defined in the folowing
structure:

20

o

typedef struct {
const unsigned char * link;
const unsigned char * no_link;
const unsigned char * bad_link;

const unsigned char * log;
const char * (log_err [NB_HLOG]);
} h_Lang;

Some possible translation are provided in the header file hiblang.h. For exemple, here is the
french version:

#define HIBDLL_TEXTS_FR (h_Lang){ \
.link="1lien", \
.no_link="pas de,lien", \
.log="Log", \
.log_err= { "Memory,error,to, decompress the picture", \

"Erroryingthe pretty-print expression", \
"The,fileyis nota,picture", \
"The, TiOS_ Font_ isg not found" \
¥ \

So, to use the HibLib library with the french texts, you will have to fill the h_config structure
like that:

h_Config hcfg = { ...
.lang=HIBLIB_TEXTS_FR,

};

21

	Formatted text drawing engine
	The main processus
	1st pass
	2nd pass

	Drawing
	The characters
	The positions of the texts
	The drawing modes
	Justified paragraph
	Word Warp
	The objects

	The HTXT format
	The HTXT/HT89/HT92 file implementations
	Defined position in the text

	Scrolling engine
	The scroll

	The screen
	Font engine
	The datas
	Drawing a font
	Load a font
	Load every font

	Menu engine
	Initialisation
	Define the enabled keys
	The "move" mode
	The levels
	The custum drawing function

	Configuration
	The structure
	Internationnalization

